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Abstract—Advances in technology have led to development
of wearable sensing, computing and communication devices
that can be woven into the physical environment of our daily
lives, enabling a large variety of new applications in several
domains including wellness and health care. Despite their
tremendous potential to impact our lives, wearable health
monitoring systems face a number of hurdles to become a
reality. The enabling processors and architectures demand a
large amount of energy, requiring sizable batteries. In this
paper, we propose a granular decision making architecture
that can be viewed as a tiered wake up circuitry. This module,
in combination with a low-power microcontroller, enables an
ultra low-power architecture. The significant power saving is
achieved by performing a preliminary ultra low-power signal
processing and hence, keeping the microcontroller off when
the incoming signal is not of interest. The preliminary signal
processing is performed by a set of special purpose functional
units, also called screening blocks, that implements template
matching functions. We formulate and solve an optimization
problem to select screening blocks such that the accuracy
requirements of the signal processing are accommodated while
the total power is minimized. Our experimental results on real
data from wearable motion sensors show that the proposed
algorithm achieves 65.2% energy saving while maintaining
92.7% sensitivity in recognizing human movements.

Keywords-Medical Embedded Systems; Body Sensor Net-
works; Signal Processing; Power Optimization.

I. INTRODUCTION

Long-term pervasive sensing and monitoring can aid in

diagnosis and tracking of certain diseases such as Parkin-

son’s [1] or extracting biokinematic characteristics of human

body such as gait parameters [2]. Advances in technology

have led to development of wearable sensing, computing and

communication devices that can be woven into the physical

environment of our daily lives, enabling a large variety

of new applications in several domains including wellness

and health care. These systems, also called Body Sensor

Networks (BSNs), enable real-time monitoring of the human

body. A BSN consists of several nodes placed on the human

body that provide sensing, processing and communication

capabilities. BSNs offer the unprecedented ability to monitor

patients in a natural setting for an extended period of time.
Despite their tremendous potential to impact our lives,

wearable health monitoring systems face a number of hur-

dles to become a reality. The enabling processors and archi-

tectures demand a large amount of energy, requiring sizable

batteries. This creates challenges for further miniaturization

of the wearable units.

This paper introduces an ultra low-power granular deci-
sion making methodology based on coarse to fine grained

signal processing techniques requiring low to slightly higher

power. This architecture is presented in the context of phys-

ical movement monitoring which aims at detecting a target

human action such as ‘walking’, ‘sit to stand’, ‘kneeling’, or

‘lie to sit’. The granular decision making module (GDMM)

will remove actions that are not of interest as early as

possible from the signal processing chain, deactivating all

remaining signal processing modules, including the micro-

controller. The granular decision making module can be

viewed as a tiered wake up circuitry. It is composed of hun-

dreds or thousands of choices of screening blocks, although

in this paper, we consider only a specific case where bit

resolution of sensor readings is considered for optimizing

power consumption of decision making architecture. Each

screening block is essentially a classifier with several tunable

parameters, by which power versus classification accuracy

can be adjusted.

Emerging applications of health care monitoring have

unique properties motivating the proposed research: signals

and events observed from the human body are slowly chang-

ing. They are governed by the physics of the human body

(e.g. kinematics, dynamics) which constrains the variations

and reduces the randomness in the signals. In addition,

events of interest, which may require the microcontroller’s

attention, often occur with a low duty cycle [3]. We exploit

theses properties to propose novel programmable multi-

level information driven decision making techniques that are

highly power optimized.

The contributions of this paper can be summarized as

follows: 1) we present a novel programmable architecture

for detecting low duty cycle actions mainly for physical

movement monitoring, 2) we first model the signal process-

ing tightly with the architecture and HW and then propose

an optimization problem for minimizing the number of

functional units used for preliminary signal processing, 3)
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we propose algorithms for solving the optimization problem

and present experimental results on real data collected from

our BSN platform and demonstrate the energy efficiency of

the proposed granular decision making architecture.

II. RELATED WORKS

Several ultra low-power wearable systems, with power

budget of less than 1 mW, with signal processing capabilities

have been proposed. The proposed systems, however, are

either not programmable (except that they may provide a few

tunable parameters), or the programmability is handled com-

pletely by a microcontroller. An intraocular CMOS pressure

sensor system implant was proposed which contains an on-

chip micro mechanical pressure sensor array, a temperature

sensor, a microcontroller-based digital control unit, and an

RF transponder [4]. An interface chip for implantable neural

recording was proposed with tunable band-pass filters and

adjustable gain [5]. A battery-less accelerometer system,

with 3D loop antenna, was proposed that utilizes the radio

wave for power feeding and signal communication as RFID.

However, the control unit of the system is a microcontroller

and is unclear how it can be powered up by energy scav-

enging [6].

Several other systems were suggested that are primarily

tailored towards specific applications and are not general-

izable. Examples include a machine-learning based patient-

specific seizure detector [7], an implantable blood pressure,

ECG sensing micro-system with adaptive RF powering [8–

11], an implantable battery-less telemetric micro-system for

EMG recording [12] and a battery-less MEMS implant for

cardiovascular applications [13].

There has been some effort towards creating ultra low-

power semiconductor components. Multi-threshold CMOS

(MTCMOS) circuits is an example [14]. A wireless system

with MTCMOS/SOI circuit technology was suggested which

lowers the supply voltage of the LSIs 0.5 V and reduces

the power dissipation to 1 mW [15]. 1 mW, however, is

still larger than the energy budget of the energy harvesting

circuits. The power budget of energy harvesting circuits is

often tens of μWs. For example, a battery-less vibration-

based energy harvesting system was proposed for ultra low-

power ubiquitous applications that can generated 36.79 μW

[16].

Our approach is different from previous works: 1) our

granular decision making module is composed of extremely

low-power functional units that perform template matching

on incoming signals, 2) the proposed architecture takes into

account specific properties of BSN applications and their

signal processing requirements, 3) our signal screening mod-

ule is reprogrammable in the sense that it can be embedded

with the microcontroller to provide signal screening for

monitoring low duty cycle events.

Table I
NOTATIONS

Term Description
BSN Body Sensor Network

GDMM Granular Decision Making Module
MSPC Main Signal Processing Chain
MCSP Minimum Cost Screening Path

â target action
A set of m not-target actions
T template generated for target action â

γ(T, S) similarity score between template T and signal segment S
n maximum number of quantization bits provided by ADC
Bi i-th screening block

thri threshold value for screening block Bi

bi bit resolution of screening block Bi

tpi true positive rate, percentage of target actions accepted by Bi

fpi false positive rate, percentage of non-target actions accepted by Bi

F desired true positive rate
wi per-action energy consumption of Bi
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Figure 1. A sensor node with two sensor modalities (accelerometer &
gyroscope), microcontroller, radio, and battery.

III. PRELIMINARIES

The problem addressed by this paper is energy savings in

BSNs through a preliminary signal screening block, called

granular decision making module. Before presenting more

details of our ultra low-power architecture, we present major

components of a typical BSN platform including sensing

hardware and signal processing flow. Throughout this paper,

we use notations listed in Table I.

A. Sensing Platform

A BSN is composed of several sensor nodes mounted on

the patient’s body, embedded with the clothing, or implanted

in the human body [17]. Figure 1 shows a sensor node that

can be attached to the patient’s body for motion analysis.

Physical movement monitoring uses inertial information

acquired by motion sensors such as accelerometers, gy-

roscopes, and magnetometers. The sensor node also has

a processing unit, TelosB mote [18], with several analog-

to-digital (ADC) channels responsible for acquiring and

digitizing analog signals for further analysis. The MSP420

microcontroller used for our experiments has an ADC unit of

12-bit resolution. The sensor node has also a radio module

for communication with other nodes in the network or with

a gateway such as a cell phone. Note that our ‘Sensing

Platform’ is purely used for data collection. In Section VI,

the data collected from this platform will be used to validate

the architecture presented in Section IV-B.

138



���������	�
�
�
������	��


��	���	�
�

���	���

��	���	�
�

������	�	�
����	���������	
�


Figure 2. MSPC (Main Signal Processing Chain) for action recognition.

B. Main Signal Processing Chain

The goal of main signal processing chain (MSPC) is to

extract useful information from sensor data [19]. Frequently,

this data is a high-level observation, such as “Is the subject

running?” or “What is the stride length when the subject

is walking?”. In other words, the purpose of main signal

processing is to provide a ‘fully’ SW programmable environ-

ment for development of ‘highly’ reliable signal processing

techniques for action detection/verification and extracting

details from the signals (e.g. balance during ‘sit to stand’

when it occurs).

In many cases, out of all possible actions, only a few are

of interest to the main signal processing (e.g. ‘walking’ or

‘sit to stand’). Therefore, the main signal processing needs

to classify actions of interest prior to extracting any further

details about actions. The overall goal of classifier is labeling

actions of interest, also called target actions. Figure 2

shows a typical signal processing model commonly used

for movement monitoring applications [20]. In this model,

signals are processed in real time by a series of processing

blocks to arrive at a classification result. These processing

blocks include filtering, segmentation, feature extraction,

and classification and parameter extraction. The filtering is

generally applied to remove sensor artifacts and noise. In

the context of action recognition, segmentation determines

portions of the signal that represents a complete action,

segregating activity versus rest. Features are functions run on

the segmented data to decrease dimensionality of the signal

without significantly reducing the relevant information. Sta-

tistical features are frequently used for action recognition

[21]. Finally, each node uses the feature vector generated

during feature extraction to determine the most likely action

by utilizing some classification algorithm such as k-Nearest

Neighbor (k-NN) [22].

IV. SCREENING APPROACH FOR POWER SAVING

This section presents different components of our energy-

efficient architecture. We describe motivation for signal

screening first, and present a top level view of our system

followed by more detailed information on each component

of the system in subsequent sections.

A. Motivation

Most BSN applications are only concerned with a very

small subset of human actions. For instance, gait analysis

only is concerned with ‘walking’, fall detection with ‘falls’,

Parkinson’s disease monitoring with certain movements such

as ‘tremors’ [23], sleep apnea with ‘restless leg syndrome’
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Figure 3. Architecture of proposed system with GDMM.

and ‘periodic limb movements’ [24]. In real-time continuous

patient monitoring, these target actions occur infrequently.

Considerable energy is wasted processing non-target actions.

As a result, efficiently rejecting non-target actions with a

screening classifier could lead to a significant increase in

system lifetime through deactivating the main processor

which provides the full signal processing for classification.

This way, an ultra low-power screening block activates the

MSPC only when a target action is observed. Clearly, one

requirement of such screening classifier is to achieve a

significantly high sensitivity, true positive rate, in detecting

target actions (activating main processor due to occurrence

of a target action). To obtain high true positive rates, the

screening architecture may accept some non-target actions.

Such actions determine the false positive rate. For the

actions that the screening block cannot reject reliably, the

MSPC will be activated. The main advantage of this method

is the power saving due to removing non-target actions

from the signal processing chain, deactivating the remaining

modules in the signal processing chain. We note that the

false positives may not generate problems as they can be

reliably detected by MSPC.

B. System Architecture

An overview of our system architecture for low-power

signal processing is shown in Figure 3. There are four main

portions of the platform: the sensors, the proposed special

purpose functional unit or granular decision making module

(GDMM), a low-power general purpose processor, and the

radio. Human actions can be examined using motion sensors

such as accelerometers and gyroscopes. The sensor readings

are sent through an ASIC architecture including an analog-

to-digital converter (ADC) and GDMM, which digitizes

the reading and performs screening tests. The ADC is an

essential component which acquires and digitizes analog

signals for further analysis. The MSP420 microcontroller

used for our experiments has an ADC unit with 12-bit

resolution. Any action that is accepted by the GDMM will be

forwarded to the MSPC for further processing. The MSPC

presented in Section III-B is implemented on the main

processor where the results can be transmitted through the

radio.
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Figure 4. GDMM (Granular Decision Making Module) composed of
several screening blocks, each having a different bit resolution.

C. Granular Decision Making Module

Our power saving model is based on a set of screening

blocks performing template matching on incoming signal.

Each screening block can be turned on to perform prelimi-

nary signal processing at different true positive rates at the

cost of power usage. An example of tunable parameters

is the number of quantization bits or bit resolution of

the sampled data. Specifically, optimizing the screening

architecture with respect to bit resolution is the main focus

of this paper. Figure 4 illustrates GDMM in connection with

other components of the system where screening blocks

operate at different bit levels. The module includes digital

pre-filtering, a buffer, and a chain of screening classifiers as

described previously. The sensor data from body-mounted

motion sensors is frequently noisy. A moving average filer

is enough to filter the signal and remove high frequency

noise [25].

As discussed before, each screening block in the chain is

applied in a sequence that will be detailed in Section V. The

processing stops as soon as a screening block in the chain

rejects the incoming action. Activating screening blocks in

serial introduces a time delay for each subsequent block. In

order to allow each block to operate on the proper signal

segment, a single buffer is used.

The lowest level screening block (i.e. B1) has the lowest

sensitivity rate due to the low resolution (e.g. 1-bit) but is

also the least energy consuming block. An active screening

block makes a preliminary binary decision (Accept/Reject)

on incoming signal. A higher level block (e.g. B2) is

activated only if the incoming action is accepted by the

preceding block (e.g. B1). Clearly, the block at the lowest

processing level (e.g. B1) needs to be active all the time.

In Section V, we present an optimization problem aiming

to find the optimal sequence of the screening blocks where

quantization bit is considered as the tuning parameter.

The Activation Module is responsible for turning on the

next screening block or the MSPC. That is, activation of the
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Figure 5. Screening block performing template matching operations.

screening blocks and the main processor are programmable

thought the activation module. A higher-level screening

block is activated only if the current action is accepted by

its preceding block.

D. Screening Blocks

Each screening block compares the incoming signal

against a predefined template over a fixed window. The

comparison is made using template matching operations.

The template matching is based on Normalized Cross Cor-

relation (NCC) [26] which will be discussed in Section V-A.

Template matching is implemented using a multiplier-

accumulator (MAC) circuit as shown in Figure 5.

Each screening block is a binary template classifier based

on the cross correlation score obtained by comparing the

incoming action with a pre-computed template of the target

action. This comparison assigns a score value, γ, based on

the similarity between the signal segment and the template.

For classification decision, γ is compared against a threshold

value, thri, and the action is classified as either accept or

reject. A rejection causes processing to stop for that action.

V. MINIMUM COST SCREENING PATH

The GDMM in Figure 4 is composed of several screening

blocks that form a decision path for classification. Each

block is associated with a quantization bit level which affects

performance of the classification. Finding minimum set of

screening blocks and their ordering is challenging because

each block has a different operating point depending on the

bit resolution and the threshold used for classification. In

this section, we formulate an optimization problem in order

to find the optimal decision path forming the best sequence

of screening blocks for examining each incoming action.

A. Template Matching

Given a target action â and a set of m non-target actions,

A = {a1, a2, . . . , am}, we generate template T , associated

with â, from a set of training trials. Templates are generated

as shown in Definition 1 using a set of training trials. During

real-time operation of the system, a classification decision

is made by comparing the incoming action to the predefined

template. The comparison is made based on the similarity

score defined in Definition 2.

Definition 1 (Template): Given a target action â with L
number of training trials, a template T for â is generate by

averaging the entire set of training trials.
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Definition 2 (Similarity Score): Given two time series

signals f and g of length N , the similarity score γ(f ,g)

between the two signals is defined based on their normalized

cross correlation by

γ(f, g) =
∑N

t=1[f(t) − f̄ ][g(t) − ḡ]√∑N
t=1[f(t) − f̄ ]2

∑N
t=1[g − ḡ]2

(1)

where f̄ and ḡ denote mean values of f and g.

B. Performance of Screening Blocks

As mentioned previously, each screening block performs

preliminary classification based on the score associated with

cross correlation between the template and the incoming

action. A screening block Bi rejects the incoming action

if the score is smaller than a certain threshold thri. Clas-

sification performance of a screening block Bi depends on

thri and the bit resolution of the block, bi. The threshold

is set during the training to obtain a pre-specified accuracy

associated with a desired performance criterion. The larger

the threshold is, the higher the likelihood of rejecting an

incoming action. Therefore, the threshold value directly

affects the true positive rates (tpi) and false positive rates

(fpi). Our granular decision making architecture aims to

minimize power consumption of the system while maintain-

ing a given lower bound on the true positive rate (F ). The

module introduces a decision path including a sequence of

the screening blocks. The power consumption of the module

is determined by the acceptance rate of the screening blocks

on the path (ri) and the energy consumption of each block

(wi). We call this problem Minimum Cost Screening Path
(MCSP) and study this problem by mapping the entire

set of screening paths onto a graph model and formally

formulating the problem on the proposed graph.

Definition 3 (Block Acceptance Rate): For each screen-

ing block Bi on a decision path, an acceptance rate ri is

defined by

ri = tpi + fpi (2)

where tpi and fpi refer to true positive rate and false positive

rate of the block Bi. The acceptance rate ri is clearly

determining percentage of the actions (including target and

non-target) accepted by Bi.

C. Problem Formulation

In order to present the minimum cost screening path

(MCSP) problem, we first map all possible decision paths

onto a graph model called screening graph. We then use

this model to find the optimal path including a subset of

screening blocks and their ordering for preliminary signal

screening.

Definition 4 (Screening Graph): Given a set of screening

blocks {B1, . . . , Bn} with bi < bi+1, the screening graph

G={V ,E, R,W} is a directed acyclic graph defined by a

set of vertices, V , a set of edges, E, and sets of weights,

� )	 )� �)� 1

Figure 6. Screening graph

W , and outgoing rates, R, associated with the vertex set.

The set of vertices, V , is {s, v1, . . . , vn, t} where s is

a dummy node connected to all other nodes, and t is the

sink node associated with the main signal processing chain.

Thus, |V |=n+2. Furthermore, each vertex vi (1 ≤ i ≤ n) is

associated with a screening block Bi. An edge eij (i < j)

connects a vertex vi (corresponding to a lower level block

Bi) to vertex vj (corresponding to higher level block Bj).

Thus, |E|= (n+1)(n+2)
2 . The set W={w1, . . . , wn} denotes

cost of each vertex for processing a single incoming action,

and is associated with the energy consumption of corre-

sponding screening blocks. Moreover, the set R={r1, . . . ,

rn} represents acceptance rates of corresponding screening

blocks. In other words, ri denotes percentage of actions that

are accepted by Bi.

For the dummy node s, rs=1 resulting in an acceptance

rate of 1. The idea is to feed all actions to the dummy

node first. A path from s to t determines active screening

blocks during preliminary classification. Furthermore, ws=0
because the dummy node does not represent a physical com-

ponent of the system. We assign a zero outgoing rate to the

destination node (rt=0) because MSPC is the last processing

component of the system and does not convey actions to

any subsequent components. The energy consumption of the

destination node, wt, is calculated by the amount of energy

required for running MSPC on the main processor.

Figure 6 shows the screening graph with v1 to vn corre-

sponding to n screening blocks. As mentioned previously,

the energy cost of a screening block Bi is denoted by wi per

incoming action. Therefore, the overall cost of each screen-

ing block depends on the percentage of the incoming actions

that are passed through the decision path to the screening

block Bi. This is directly defined by the acceptance rate of

preceding blocks on the path. Thus, each path in the graph

has a different cost. Our objective is to find the decision

path with the minimum overall cost.

To better show how the overall cost for a path from s
to t is calculated, we present a synthetic screening graph

(Figure 7) with three screening blocks indicated by u1,

u2, and u3. Each vertex has an incoming rate, ri and a

weight denoted by wi. The weights are shown in nW with
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Figure 7. An example of a screening graph with four vertices. A minimum
cost decision path is P ={s, u1, u3, t} with a total cost of 505 nW.

destination node (t) having a significantly larger amount of

power consumption (e.g. wt=1000) as it corresponds to the

main signal processing chain. A path P={s, u1, u3, t} which

is the minimum cost path has a cost of 505 nW. The edge

(s,u1) has a cost of rs × w1=1 nW. The next edge, (u1,u3)

has a cost of r1 × w3=4.8 nW. We note that, in fact, r1 is

the minimum rate among all previously traversed vertices (s
and u1). The cost for the edge (u3,t) is r3 × wt=500 nW.

Similarly, rt is the smallest rate among previously traversed

nodes (s, u1, u3). In general, however, if ri is not the

smallest rate among all preceding nodes, the cost for an

edge eij is a function of rates on all previously traversed

nodes. In this example, acceptance rates are monotonically

decreasing. Thus, the cost for each edge eij can be computed

based on the rate and weight of adjacent vertices (i.e. ri and

wj). In order to formally define the MCSP problem, we first

define the cost for each decision path on a given screening

graph.

Definition 5 (Decision Path Cost): Given a screening

graph G, the total cost of a decision path P={s, u1, . . . ,

ul, t} of length l is given by

wP = rsw1 + min(rs, r1)w2 + min(rs, r1, r2)w3

+ · · · + min(rs, r1, . . . , rl)wt (3)

where ui ∈ V , ri is the incoming rate for vertex ui, and

rs=1. Furthermore, each term min(rs, r1 . . . , ri)wj repre-

sents the cost associated with the edge eij=(ui,uj) on the

path.

As it can be observed from Definition 5, the cost for

each edge eij on the path depends on the cost of uj and

acceptance rate of all previously traversed nodes.

Problem 1: Given a screening graph G, the MCSP prob-

lem is to find a decision path, P̂ , with minimum cost.

P̂ = arg min
P

wP (4)

Definition 6 (Path Acceptance Rate): For a decision path

P from s to t on the screening graph G, the acceptance rate

RP is defined as the percentage of actions that are accepted

by all the node on the path, and is given by

RP = minui∈P (ri) (5)

D. Shortest Path Solution

The problem presented in Section V-C is different from

the classical shortest path problem because the contribution

of an edge to path cost depends not only on the cost of that

edge but also on the costs of the edges already traversed. A

special case of this problem with applications in multimedia

data transmission has been studied in [27].

We transform the MCSP problem to the traditional short-

est path by simplifying some of the assumptions on accep-

tance rate of our screening blocks. We show that under these

realistic assumptions, the problem can be solved with typical

shortest path algorithms (e.g. Dijkstra’s algorithm [28]).

In our work, the classifiers use the same template and

signal, but linearly quantized at different bit levels. From

this model, several basic assumptions can be inferred.

1) The target actions are rejected in approximately the

same order by all the screening blocks on the decision

path. Equivalently, if a target action is rejected by

Bi, it is also rejected by Bj while j > i. In other

words, a higher level block Bj may reject some target

actions that are accepted by Bi. Therefore, compared

to a lower level block, a higher level block may have

smaller or equal true positive rate (tpj ≤ tpi).

2) Similarly, the non-target events are rejected in approx-

imately the same order by all the classifiers. Thus,

a higher level block Bj may reject some non-target

actions that are accepted by a lowe leve block Bi.

Therefore, compared to a lower level block, a higher

level block may have smaller or equal false positive

rate (fpj ≤ fpi).

3) Classifiers at higher quantization bit levels perform

better or equal to classifiers at lower bit levels. That

is to say, for two screening blocks with equal true

positive rates tpi = tpj = F and j > i, rj ≤ ri. In

fact, in order to achieve the lower bound F on true

positive rate of the entire granular decision making,

we set the threshold thri on each screening block such

that the minimum true positive rate of F is obtained.

Theorem 1: If u1, u2, . . . , uk (associated with screening

blocks B1 . . . Bk) form an optimal decision path, the cost

of an edge eij is a function of wj and ri.

Proof: As shown in (3), the total cost associated with

edge eij on path P is given by

we
ij = min(rs, r1, . . . , ri)wj (6)

The assumptions on monotonically decreasing acceptance

rate would result in ui having smallest acceptance rate

among all preceding nodes. That is min(rs, r1, . . . , ri)=ri.

Therefore,

we
ij = riwj (7)

The immediate result of Theorem 1 is that the cost of

each edge on the decision path is deterministic and can be
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Table II
EXPERIMENTAL ACTIONS

No. Actions
1 Stand to sit
2 Sit to stand
3 Sit to lie
4 Lie to sit
5 Bend and grasp
6 Kneeling
7 Turn clockwise
8 Turn counter clockwise
9 Step forward
10 Step Backward

computed before running any algorithm for computing the

path. Therefore, the problem is transformed into a simple

shortest path problem [28].

VI. EXPERIMENTAL RESULTS

We evaluated performance of our granular decision mak-

ing architecture for identifying each one of the 10 target

actions listed in Table II. In each phase, one of the actions

was considered as target action and the rest as non-target. A

set of experiments was carried out on three male subjects, all

between the ages of 25 and 35 and in good health condition.

Subjects were asked to repeatedly perform each specific

action ten times.

A. Data Acquisition Platform

Nine sensor nodes, each as shown in Figure 1, were

used for data collection. Each sensor node had a 3-axis

accelerometer, a 2-axis gyroscope. The data were collected

and processed in MATLAB. For simplicity, we used only

one sensor (Z-axis of the node placed one the ‘waist’). For

actions that require multiple sensors, the same methodology

can be used. That is, the template matching on multiple

nodes/axes can be utilized to activate MSPC. In this case,

a data fusion algorithm will be used to combine decisions

made by different sensors and decide if the microcontroller

needs to be tuned on/off. The data fusion from multiple

sensor nodes is out of scope of this paper (for brevity) and

is the subject of our future work.

For the purpose of action recognition, we used the TelosB

motes [18] which have an embedded MSP430 microcon-

troller, particularly used for executing main signal process-

ing tasks, and consume 3 mW in active mode.

B. Template Generation

The sensor data recorded from each action were equally

split into training and test datasets. The training dataset was

used for template generation as well as construction of the

optimal decision path, and the test dataset was used for

validation of the results.

Table III
SHORTEST PATH AND POWER CONSUMPTION FOR DETECTING ‘SIT TO

STAND’.

Sensitivity (%) Template Length Bit Resolutions Power
(# of samples) Used (nW)

50 300 1 → 9 5.68
60 300 3 → 9 6.20
70 300 3 → 10 6.64
80 300 4 → 10 6.76
90 300 4 → 11 6.84
95 300 4 → 11 7.02

C. Parameter Setting

As discussed in Section V, a screening graph has two

sets of parameters which are used for constructing opti-

mal decision path. These parameters include weights (W )

and incoming rates (R) associated with different screening

blocks. Both parameters are calculated using training trials.

Weights are calculated based on the amount of energy con-

sumed by corresponding screening blocks. Incoming rates

are calculated by examining percentage of training trials that

are accepted by each screening block.

To estimate energy consumption of each screening block,

the screening blocks were implemented using template

matching units as described previously. Template matching

function was modeled using Verilog. The cross-correlation

was implemented by a series of MAC steps depending on

the number of incoming samples. At each clock instant,

the digitized template data and the incoming signal data

were multiplied and added to the previous MAC value. The

multiply-add operation repeated depending on the length of

the template, to calculate the cross correlation function. All

the operations were carried out at a low frequency of 20
Hz. The design was synthesized using Synopsys with the

45 nm NanGate Open Cell library. The switching activity

was then considered and the power numbers were com-

puted in Synopsys. The power consumption was computed

by determining the switching activities of transistor. The

power values ranged between 0.34 nW for the 1-bit block

(w1=0.34) and 1.45 nW for the 12-bit screening block

(w12=1.45).

In order to calculate the incoming rates (R) on individual

vertices of the screening graph, we set the threshold (thri)

on each screening block such that the desired true positive

rate (F ) is obtained. In fact, the threshold is set to guarantee

the lower bound F on the overall sensitivity of the system.

Therefore, the threshold on each screening block Bi is given

by

ˆthri = arg min
thri

tpi ≥ F (8)

We note that tpi decrease as thri grows. Thus, thri is

set to the smallest value that meets the desired sensitivity

requirement.
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Figure 8. Path acceptance rate as a function of sensitivity, for detecting
‘sit to stand’.
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Figure 9. Power saving as a function of sensitivity, for detecting ‘sit to
stand’ through the granular decision making module (GDMM).

D. Decision Path

Table III shows decision path reported by our optimization

technique while the desired true positive rate (F ) varies

from 50% to 95%. In all cases, only two screening blocks

are chosen by the algorithm. We note, however, that the

total energy depends also on the bit resolution of the indi-

vidual screening blocks. For example, B11 consumes more

power than B4. The third column in Table III shows path

acceptance rate, percentage of the time that the main signal

processing chain (MSPC) is activated by the algorithm. We

note that the first screening block (e.g. 3-bit or 4-bit template

matching blocks) is active all the time. However, the second

screening block is activated based to the outcome of the

previous template matching.

The power optimization problem with a desired true pos-

itive rate would lead to a shortest path problem as explained

in Section V-D. As expected, Figure 8 confirms that MSPC

is activated more often when a higher true positive rate is

desired.

The power consumption of our decision making module

can be compared with that of an MSP430 microcontroller

�� �� �� �� �� ���
��

��

��

��

��

��

��

��

��

��

���

#�����$���
�������������������

%
��
�

��
$�
��

�
��
��
���
��
���

�

Figure 10. Comparing measured versus desired true positive rates when
‘sit to stand’ is target action. It shows percentage of the time that the main
signal processing chain (MSPC) is active.
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Figure 11. Power saving for detecting different movements. Results are
shown for three values of desired true positive (60%, 75%, and 90%.).

which consumes 3 mW in active mode. Figure 9 shows the

amount of power savings obtained by our system compared

to a system with the microcontroller being instantly active

(a direct connection between node s and t in the screening

graph). As expected, the higher the true positive rate is, the

lower energy saving that can be achieved.

Once the optimal decision path is constructed, it can be

used to measure its actual precision when test trials are

applied. This simulates a real-time scenario where incoming

signals are examined by the decision making module for

identification of a specific target action. For this purpose, we

fed the sensor data to the optimal decision paths shown in

Table III. The actual measured true positive rates are shown

in Figure 10. The values range from 56.7% to 100% with

an average of 78.8%. We note that all values on the graph in

Figure 10 are above the dashed line, which implies that the

measured true positive rate is always higher than the desired

lower bound (F ).

E. Detecting Other Movements

In order to establish the robustness of our granular de-

cision making architecture with respect to different target
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Figure 12. Measured sensitivity for detecting different movements. Results
are shown for three values of desired true positive (60%, 75%, and 90%.).

actions, we used the data collected from our sensing platform

and considered each action in Table II to be the target

action. In each case, appropriate template was chosen and

the specific action was considered as the target. For each

target action, the optimal decision path was constructed from

the screening graph as discussed in Section V. For extracting

each decision path, the thresholds were set on each template

matching block to meet the desired true positive rate. The

sequence of the screening blocks on the decision path was

used to accept/reject each incoming signal and activate

MSPC. The set of screening blocks were then employed

to classify the target movement. The results obtained from

this analysis are shown in Figure 11 and Figure 12 for three

different sensitivity rates. In particular, our system achieves

an average power saving of 65.2% while maintaining a true

positive rate of 92.7%.

VII. DISCUSSION AND FUTURE WORK

The power consumption of our granular decision making

module is six orders of magnitude smaller than state-of-the-

art low-power microcontrollers.

The amount of power savings that can be achieved by

our decision making architecture highly depends on the

frequency of occurrence of the target action. For our ex-

periments, we assumed that all actions are equally likely,

and therefore, ’sit to stand’ occurs 10% of the times. In

reality, however, human actions are sparse occurring much

less frequently, which results in much higher power savings.

In our experiments, we used only a single sensor (Z-axis

of accelerometer on ‘waist’ node) to detect target actions. In

general, there might be actions that require information from

multiple sensors. In such cases, the designer can replicate

the granular decision making to accept/reject each incoming

action. The microcontroller can be activated based on the

decision made by a decision fusion module. The data fusion

from multiple sensor nodes is out of scope of this paper and

is the subject of our future work.

In this paper, we focused on optimizing screening path

with respect to bit resolution. In future, we will also investi-

gate the effect of other tuning parameters such as sampling

rate and window size on the accuracy and the complexity of

the signal processing as well as the energy saving.

VIII. CONCLUSION

We proposed a light-weight signal processing methodol-

ogy for Body Sensor Networks applications by early rejec-

tion of non-target action. The proposed hardware-assisted

algorithm uses template matching blocks at different bit

levels and finds an optimal order for their execution. Our

experimental results demonstrate the effectiveness of the

proposed architecture in reducing the power consumption

of the system. In particular, we achieved an energy saving

of 65.2% while maintaining 92.7% true positive rates in

detecting actions of interest.
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